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A new method support vector machine (SVM) and the heuristic method (HM) were used to develop nonlinear
and linear models between the solubility in electrolyte containing sodium chloride and three molecular
descriptors of 217 nonelectrolytes. The molecular descriptors representing the structural features of the
compounds include two topological and one electrostatic descriptor. The three molecular descriptors selected
by HM in CODESSA were used as inputs for SVM. The results obtained by HM and SVM both were
satisfactory. The model of HM leads to a correlation coefficient (R) of 0.980 and root-mean-square error
(RMS) of 0.219 for the test set. The same descriptors were also employed to build the model in pure water,
and the prediction results were consistent with the experimental solubilities. Furthermore, a predictive correlation
coefficientR ) 0.988 and RMS error of 0.170 for the test set were obtained by SVM. The prediction results
are in very good agreement with the experimental values. This paper provides a new and effective method
for predicting the solubility in electrolyte and reveals some insight into the structural features that are related
to the noneletrolytes.

1. Introduction

It is well-known that saturated hydrocarbons are important
constituents of petroleum products. Anthropogenic activity
associated with the use of these compounds in chemical industry
and in energy generation releases hydrocarbons into the
environment.1 The aqueous solubility of these compounds is
an important molecular property, playing a large role in the
behavior of compounds in many areas of interest. In modeling
the environmental impact of a contaminant, alone with the soil-
water absorption coefficient, the solubility is a key term in the
understanding of transport mechanisms and distribution in water.
The petroleum and petrochemical industries require this infor-
mation for estimating the partition of hydrocarbons between
aqueous and organic phase2,3 and for minimizing the presence
of hazardous solutes in aqueous effluents.4 Environmental
chemistry and engineering also need the data for modeling of
the transport and fate of hydrocarbon pollutants in the environ-
ment5,6 and for the remediation of sites contaminated by
petroleum spills.7,8 The environmental risk for using these
compounds should be assessed because these types of com-
pounds are often the most long-lived of environmental con-
taminants due to their comparatively low level of biodegrad-
ability when compared to oxygen or nitrogen containing
compounds. However, experimental solubility data are rather
scarce for saturated hydrocarbons with 10 or more carbon atoms.
Whereas a general equation would be of greatest use, the present
study is limited to hydrocarbons which were expected to be

advantageous in obtaining a significant correlation, as the
elimination of compounds that will undergo specific interactions
with water, such as hydrogen bonding, simplifies the nature of
the interactions that must be accounted for. Property of
hydrocarbons in water saturated with salt is useful upon its
contact with seawater. Given the importance of solubility, a
potential theoretical method for predicting the solubility is
desired, as many compounds exist for which the solubility
simply is not available.

Quantitative structure-property relationships (QSPR) studies
have been demonstrated to be an effective computational tool
in understanding the correlation between the structure of
molecules and their properties.9-11 In a QSPR study, one seeks
to find a mathematical relationship between the property and
one or more descriptors. Thus, this study can indicate which of
the structural factors may play an important role in the
determination of a property. Furthermore, its advantage over
other methods lies in the fact that the descriptors used can be
calculated from the structure alone and are not dependent on
any experimental properties. However, the main problems
encountered in this kind of research are still the description of
the molecular structure using appropriate molecular descriptors
and selection of suitable modeling methods. At present, many
types of molecular descriptors such as constitutional, topological,
geometrical, electrostatic, and quantum chemical descriptors
have been proposed to describe the structural features of
molecules.12-14 The same as the diversity of molecular descrip-
tors many different chemometrics and chemoinformatics meth-
ods, such as multiple linear regression (MLR), principal
component regression (PCR), partial least squares (PLS),
different types of artificial neural networks (ANN), and genetic
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algorithms (GA), can be employed to derive correlation models
between the molecular structures and properties.

Recently, there is a growing interest in the use of SVM to
chemical problems due to its remarkable generalization perfor-
mance in modeling nonlinear problems. SVM is a new algorithm
developed from the machine learning community and has attract-
ed attention and gained extensive application, such as pattern
recognition problems,15-17 drug design,18 prediction of protein
structure,19 identifying genes,20 quantitative structure-activity
relationship (QSAR),21 and QSPR analysis.22-24 Nevertheless,
to the best of our knowledge, there is no prediction of solubility
in electrolyte by the QSPR approach based on SVM.

In the present work, SVM was used for the prediction of
solubility in water saturated with salt at a different temperature
of 217 hydrocarbons using descriptors calculated by the software
CODESSA.25 The aim was to establish a QSPR model that could
be used for the prediction of solubility of hydrocarbons from
their molecular structure alone, to show the flexible modeling
ability of SVM, and, at the same time, to seek the important
structure features related to the solubility of hydrocarbons.

2. Experimental Section

2.1. Data Set.In our study, a set of 217 hydrocarbons col-
lected from ref 26 is investigated. The solubilities in water with-
out salt (X ) 0) and in water saturated with salt (NaCl) [X )
358 700 ppm (wt)] was measured at different temperature and
represented as logSw and logS, whereSw andSare the solubility
(ppm). Solubilities of aliphatic, alicyclic, and aromatic hydrocar-
bons were measured. A complete list of the compounds’ names
and their corresponding experimental logSw and logS is given
in Table 1. The data set of logS was randomly divided into
two subsets: training set and test set (174 and 43 chemicals,
respectively). The training set was used to optimize the param-
eters of SVM and the test set was used to evaluate the prediction
ability of SVM. Leave-one-out (LOO) cross-validation was
employed on the training set to optimize the parameters of SVM.

2.2. Descriptors Calculation. All structures of the com-
pounds were drawn with the Hyperchem program.27 The final
structural optimizations of compounds were performed using
the AM1 parametrization within the semiempirical quantum-
chemical program MOPAC 6.0.28 The geometry optimization
was performed without symmetry restrictions. In all cases,
frequency calculations had been performed in order to ensure
that all of the calculated geometries correspond to true minima.
Thereafter, the CODESSA program was used to calculate five
types of molecular descriptors: constitutional, topological,
geometric, electrostatic, and quantum-chemical. Constitutional
descriptors are related to the number of atoms and bonds in
each molecule. Topological descriptors include valence and
nonvalence molecular connectivity indices calculated from the
hydrogen-suppressed formula of the molecule, encoding infor-
mation about the size, composition, and the degree of branching
of a molecule. The geometrical descriptors describe the size of
the molecule and require 3D-coordinates of the atoms in the
given molecular. The electrostatic descriptors reflect charac-
teristics of the charge distribution of the molecular. The quantum
chemical descriptors offer information about binding and
formation energies, partial atom charge, dipole moment, and
molecular orbital energy levels.

3. Methodology

3.1. Selection of Descriptors Based on the Heuristic
Method. Successful QSPR depends on good descriptors selec-
tion. If molecular structures are represented by improper

descriptors, they will not lead to reasonable predictions. In recent
years, methodology for a general QSPR approach has been
developed and coded as the CODESSA software package, which
combines different ways of quantifying the structural informa-
tion about the chemicals with advanced statistical analyses for
the establishment of molecular structure-property relationships.
To find the best QSPR model, the correlation analysis was
carried out using HM which is based on the scale forward
selection technique.

The HM provides collinearity control (i.e., any two descriptors
intercorrelated above 0.8 are never involved in the same model)
and implement heuristic algorithms for rapid selection of the
best correlation, without testing all of the possible combinations
of the available descriptors. HM of the descriptors selection
proceeds with a pre-selection of the descriptors to ensure (1)
those descriptors that are available for each structure, (2) those
values having variation for all structures, (3) descriptors that
provide an F-test’s value below 1.0 on the one-parameter
correlation, and (4) the descriptors whoset values are less than
the user-specified value, etc.

Following the pre-selection of descriptors, multiple linear
regression models are developed. The selection of best correla-
tions proceeds as follows: (1) Beginning with the top descriptor
from the pre-selected list of descriptors, the two-parameter
correlations are calculated using the following pairs: the first
descriptor with each of the remaining descriptors, second
descriptor with each of the remaining descriptors, etc. This
procedure is continued until for somenth descriptor no
correlations with an F-test value above one-third of the
maximum F-test value for a given set are found. (2) The best
pairs of branching criteria (number of descriptors sets to select
for next recursion level) with highest F-test values in the two-
parameter correlations are selected and processed further as the
working sets. (3) If not correlated over rsig (descriptors are
considered to be noncollinear below the value of their pair
correlation coefficient) with the descriptors already included,
each of the remaining descriptors is added to the selected
working set of descriptors. If the resulting correlation gives
F-test value above F workingn/(n + 1) (wheren is a number
of descriptors in the working set plus one), i.e., if this correlation
is more significant than the working correlation, then this
extended set of descriptors is considered for further treatment.
(4) After all descriptors have been applied one-by-one and if
the maximum number of descriptors, allowed by the user, is
not yet achieved, then best extended working sets, i.e., the sets
with the highest F-values, are submitted to the procedure from
step (3). Otherwise the procedure is completed and the
maximum number of descriptors best correlations found. The
goodness of the correlation is tested by the coefficient regression
(R2) and the F-test values (F).

The advantages of this method are as follows: it usually
produces correlations 2-5 times faster than other methods and
has no restrictions on the size of the data set. The heuristic
method can either quickly give a good estimation about what
quality of correlation to expect from the data, or derive several
best regression models.

3.2. Support Vector Machine.SVM is gaining popularity
due to many attractive features and promising empirical
performance. It originated from early concepts developed by
Vapnik and Chervonenkis.29-31 SVM represents a powerful
technique for a general (nonlinear) classification, regression,
and outlier detection with an intuitive model representation.

In comparison with other neural network regressions, SVM
has three distinct characteristics in estimation of regression
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TABLE 1: Predicted log Sw by HM and log S by HM and SVM

no. compound
log
Sw

log Sw
(HM)

log
S

log S
(HM)

log S
(SVM) no. compound

log
Sw

log Sw
(HM)

log
S

log S
(HM)

log S
(SVM)

1 cyclopentane 2.204 2.746 2.048 2.594 2.096 72 nonane -0.914 -0.807 -1.044 -0.939 -0.922
2 pentane 1.597 1.695 1.441 1.552 1.459 73a 2-methyloctane -0.775 -0.75 -0.906 -0.885 -0.837
3a 2-methylbutane 1.679 1.853 1.549 1.707 1.586 74 3-methyloctane -0.805 -0.709 -0.936 -0.844 -0.909
4 benzene 3.244 2.815 3.132 2.663 2.914 75 4-methyloctane -0.939 -0.73 -1.070 -0.864 -0.890
5 cyclohexane 1.749 1.961 1.593 1.813 1.446 76 3-ethylheptane -0.774 -0.856 -0.905 -0.988 -0.911
6 methylcyclopentane 1.621 1.884 1.465 1.735 1.697 77 4-ethylheptane -0.728 -0.767 -0.859 -0.900 -0.939
7 hexane 0.976 1.064 0.846 0.924 0.822 78a 2,2-dimethylheptane -0.511 -0.509 -0.641 -0.650 -0.648
8a 2-methylpentane 1.114 1.094 0.983 0.951 1.014 79 2,3-dimethylheptane -0.710 -0.747 -0.841 -0.883 -0.813
9 3-methylpentane 1.253 0.956 1.122 0.815 0.926 80 2,4-dimethylheptane -0.516 -0.661 -0.646 -0.798 -0.778

10 2,2-dimethylbutane 1.377 1.225 1.246 1.077 1.234 81 2,5-dimethylheptane -0.595 -0.644 -0.726 -0.781 -0.787
11 2,3-dimethylbutane 1.281 1.081 1.150 0.936 1.091 82 2,6-dimethylheptane -0.575 -0.584 -0.706 -0.723 -0.727
12 Toluene 2.734 2.91 2.604 2.755 2.673 83a 3,3-dimethylheptane -0.621 -0.627 -0.752 -0.765 -0.754
13a Ethylcyclopentane 0.980 1.116 0.825 0.971 1.012 84 3,4-dimethylheptane -0.713 -0.791 -0.844 -0.926 -0.852
14 1,1-dimethylcyclopentane 1.353 1.222 1.197 1.072 1.265 85 3,5-dimethylheptane -0.595 -0.691 -0.726 -0.826 -0.840
15 C-1,2-dimethylcyclopentane 1.076 1.136 0.920 0.989 1.120 86 4,4-dimethylheptane -0.575 -0.725 -0.706 -0.863 -0.767
16 T-1,2-dimethylcyclopentane 1.259 1.181 1.103 1.034 1.125 87 3-ethyl-2-methylhexane -0.647 -0.815 -0.778 -0.950 -0.843
17 C-1,3-dimethylcyclopentane 1.285 1.198 1.129 1.050 1.168 88a 4-ethyl-2-methylhexane -0.539 -0.778 -0.670 -0.913 -0.823
18a T-1,3-dimethylcyclopentane 1.262 1.17 1.107 1.023 1.161 89 3-ethyl-3-methylhexane -0.713 -0.735 -0.844 -0.870 -0.832
19 methylcyclohexane 1.204 1.235 1.048 1.089 1.064 90 3-ethyl-4-methylhexane -0.708 -0.866 -0.839 -0.999 -0.879
20 heptane 0.350 0.261 0.219 0.125 0.306 91 2,2,3-trimethylhexane -0.534 -0.599 -0.664 -0.739 -0.680
21 2-methylhexane 0.405 0.336 0.274 0.197 0.406 92 2,2,4-trimethylhexane -0.353 -0.615 -0.484 -0.757 -0.678
22 3-methylhexane 0.422 0.367 0.291 0.229 0.322 93a 2,2,5-trimethylhexane -0.268 -0.452 -0.398 -0.596 -0.556
23a 3-ethylpentane 0.470 0.223 0.340 0.087 0.298 94 2,3,3-trimethylhexane -0.638 -0.658 -0.769 -0.797 -0.716
24 2,2-dimethylpentane 0.643 0.559 0.513 0.414 0.590 95 2,3,4-trimethylhexane -0.673 -0.769 -0.804 -0.906 -0.796
25 2,3-dimethylpentane 0.720 0.405 0.589 0.265 0.416 96 2,3,5-trimethylhexane -0.476 -0.678 -0.607 -0.817 -0.733
26 2,4-dimethylpentane 0.644 0.432 0.514 0.289 0.499 97 2,4,4-trimethylhexane -0.458 -0.629 -0.589 -0.770 -0.692
27 3,3-dimethylpentane 0.772 0.357 0.642 0.216 0.450 98a 3,3,4-trimethylhexane -0.710 -0.692 -0.840 -0.830 -0.760
28a 2,2,3-trimethylbutane 0.759 0.558 0.628 0.412 0.606 99 3,3-diethylpentane -0.854 -0.77 -0.985 -0.903 -0.904
29 ethylbenzene 2.218 2.482 2.045 2.329 2.197 100 3-ethyl-2,2-dimethylpentane-0.540 -0.607 -0.671 -0.747 -0.703
30 M-xylene 2.241 2.566 2.025 2.411 2.083 101 3-ethyl-2,3-dimethylpentane-0.818 -0.699 -0.948 -0.836 -0.781
31 O-xylene 2.344 2.434 2.113 2.280 2.058 102 3-ethyl-2,4-dimethylpentane-0.613 -0.697 -0.744 -0.834 -0.774
32 P-xylene 2.305 2.452 2.045 2.298 2.043 103a 2,2,3,3-tetramethylpentane -0.705 -0.48 -0.836 -0.624 -0.576
33a propylcyclopentane 0.310-0.079 0.154-0.219 -0.262 104 2,2,3,4-tetramethylpentane -0.519 -0.503 -0.650 -0.646 -0.591
34 ethylcyclohexane 0.465 0.472 0.309 0.330 0.374 105 2,2,4,4-tetramethylpentane-0.244 -0.239 -0.375 -0.389 -0.306
35 1,1-dimethylcyclohexane 0.777 0.732 0.622 0.584 0.647 106 2,3,3,4-tetramethylpentane-0.738 -0.58 -0.868 -0.721 -0.658
36 C-1,2-dimethylcyclohexane 0.778 0.555 0.622 0.410 0.463 107 butylbenzene 1.141 1.247 0.851 1.099 1.073
37 T-1,2-dimethylcyclohexane 0.675 0.518 0.520 0.374 0.466 108a M-diethylbenzene 1.435 1.246 1.282 1.098 1.096
38a C-1,3-dimethylcyclohexane 0.763 0.571 0.608 0.426 0.517 109 O-diethylbenzene 1.368 1.286 1.215 1.139 1.160
39 T-1,3-dimethylcyclohexane 0.653 0.58 0.497 0.435 0.518 110 P-dimethylbenzene 1.370 1.393 1.216 1.244 1.272
40 C-1,4-dimethylcyclohexane 0.654 0.55 0.498 0.405 0.510 111 1,2,3,4-tetramethylbenzene 0.866 1.298 0.713 1.148 0.960
41 T-1,4-dimethylcyclohexane 0.584 0.514 0.428 0.369 0.502 112 1,2,3,5-tetramethylbenzene 1.028 1.298 0.875 1.147 0.912
42 octane -0.366 -0.199 -0.496 -0.334 -0.366 113a 1-cyclopentylpentane -0.939 -0.622 -1.095 -0.760 -0.856
43a 2-methylheptane -0.126 -0.215 -0.257 -0.352 -0.235 114 butylcyclohexane -0.749 -0.586 -0.905 -0.724 -0.857
44 3-methylheptane -0.101 -0.211 -0.232 -0.347 -0.303 115 decane -1.284 -1.176 -1.415 -1.308 -1.559
45 4-methylheptane -0.129 -0.24 -0.260 -0.376 -0.285 116 2-methylnonane -1.374 -1.12 -1.504 -1.254 -1.401
46 3-ethylhexane -0.149 -0.303 -0.280 -0.437 -0.330 117 3-methylnonane -1.393 -1.17 -1.523 -1.302 -1.462
47 2,2-dimethylhexane 0.144-0.01 0.013-0.153 -0.054 118a 4-methylnonane -1.342 -1.163 -1.473 -1.296 -1.458
48a 2,3-dimethylhexane -0.075 -0.248 -0.206 -0.386 -0.214 119 5-methylnonane -1.327 -1.272 -1.458 -1.404 -1.424
49 2,4-dimethylhexane 0.074-0.196 -0.056 -0.335 -0.186 120 3-ethyloctane -1.362 -1.271 -1.492 -1.402 -1.483
50 2,5-dimethylhexane 0.101-0.049 -0.030 -0.190 -0.124 121 4-ethyloctane -1.292 -1.282 -1.422 -1.413 -1.470
51 3,3-dimethylhexane 0.017-0.056 -0.114 -0.196 -0.144 122 2,2-dimethyloctane -1.126 -0.969 -1.256 -1.108 -1.167
52 3,4-dimethylhexane -0.153 -0.272 -0.284 -0.408 -0.258 123a 2,3-dimethyloctane -1.308 -1.198 -1.439 -1.332 -1.358
53a 3-ethyl-2-methylpentane -0.076 -0.268 -0.207 -0.405 -0.248 124 2,4-dimethyloctane -1.100 -1.121 -1.231 -1.257 -1.321
54 3-ethyl-3-methylpentane -0.142 -0.21 -0.273 -0.348 -0.240 125 2,5-dimethyloctane -1.165 -1.115 -1.296 -1.251 -1.323
55 2,2,3-trimethylpentane 0.064-0.098 -0.067 -0.240 -0.093 126 2,6-dimethyloctane -1.212 -1.131 -1.343 -1.266 -1.330
56 2,2,4-trimethylpentane 0.347 0.052 0.216-0.094 0.017 127 2,7-dimethyloctane -1.199 -1.026 -1.330 -1.164 -1.261
57 2,3,3-trimethylpentane -0.053 -0.17 -0.184 -0.311 -0.139 128a 3,3-dimethyloctane -1.232 -0.997 -1.363 -1.134 -1.291
58a 2,3,4-trimethylpentane 0.134-0.199 0.003-0.339 -0.162 129 3,4-dimethyloctane -1.286 -1.233 -1.416 -1.366 -1.404
59 2,2,3,3-tetramethylbutane 0.154-0.016 0.024-0.164 -0.093 130 3,5-dimethyloctane -1.187 -1.226 -1.318 -1.359 -1.374
60 propylbenzene 1.717 1.849 1.605 1.699 1.607 131 3,6-dimethyloctane -1.222 -1.181 -1.353 -1.315 -1.387
61 cumene 1.699 1.831 1.628 1.679 1.414 132 4,4-dimethyloctane -1.140 -1.149 -1.271 -1.285 -1.292
62 M-ethyltoluene 1.918 1.948 1.765 1.797 1.638 133a 4,5-dimethyloctane -1.255 -1.272 -1.386 -1.405 -1.392
63a O-ethyltoluene 1.969 1.911 1.816 1.760 1.634 134 4-propylheptane -1.140 -1.293 -1.271 -1.424 -1.459
64 P-ethyltoluene 1.977 1.935 1.824 1.784 1.627 135 4-isopropylheptane -1.175 -1.259 -1.306 -1.393 -1.385
65 1,2,3-trimethylbenzene 1.816 1.953 1.687 1.800 1.569 136 3-ethyl-2-methylheptane -1.232 -1.221 -1.363 -1.354 -1.394
66 1,2,4-trimethylbenzene 1.756 1.916 1.598 1.763 1.497 137 4-ethyl-2-methylheptane -1.108 -1.141 -1.239 -1.275 -1.370
67 mesitylene 1.683 1.994 1.496 1.840 1.558 138a 5-ethyl-2-methylheptane -1.194 -1.259 -1.325 -1.393 -1.369
68a butylcyclopentane -0.366 -0.151 -0.521 -0.291 -0.257 139 3-ethyl-3-methylheptane -1.296 -1.159 -1.427 -1.293 -1.386
69 propylcyclohexane -0.169 -0.079 -0.325 -0.219 -0.260 140 4-ethyl-3-methylheptane -1.256 -1.311 -1.387 -1.442 -1.426
70 C-c-1,3,5-trimethylcyclohexane 0.293 0.052 0.137-0.093 -0.050 141 3-ethyl-5-methylheptane -1.157 -1.234 -1.288 -1.366 -1.424
71 C-t-1,3,5-trimethylcyclohexane 0.241 0.015 0.085-0.129 -0.065 142 3-ethyl-4-methylheptane -1.276 -1.302 -1.406 -1.433 -1.428

143a 4-ethyl-4-methylheptane -1.222 -1.121 -1.353 -1.255 -1.381 181 2,3,4,5-tetramethylhexane -1.108 -1.21 -1.239 -1.347 -1.276
144 2,2,3-trimethylheptane -1.143 -0.995 -1.273 -1.135 -1.167 182 3,3,4,4-tetramethylhexane -1.446 -1.196 -1.577 -1.335 -1.238
145 2,2,4-trimethylheptane -0.909 -0.987 -1.040 -1.128 -1.124 183a 2,4-dimethyl-3-isopropylpentane-1.129 -1.084 -1.260 -1.223 -1.223
146 2,2,5-trimethylheptane -0.972 -0.989 -1.103 -1.130 -1.132 184 3,3-diethyl-2-methylpentane -1.439 -1.206 -1.570 -1.339 -1.390
147 2,2,6-trimethylheptane -0.925 -0.948 -1.056 -1.091 -1.071 185 3-ethyl-2,2,3-trimethylpentane-1.434 -1.206 -1.565 -1.339 -1.390
148a 2,3,3-trimethylheptane -1.207 -1.055 -1.338 -1.193 -1.226 186 3-ethyl-2,2,4-trimethylpentane-1.085 -1.004 -1.216 -1.145 -1.135
149 2,3,4-trimethylheptane -1.200 -1.214 -1.331 -1.349 -1.327 187 3-ethyl-2,3,4-trimethylpentane-1.432 -1.056 -1.563 -1.194 -1.241
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function: (1) SVM estimates the regression using a hypothesis
space of linear functions in a high dimensional feature space.
(2) SVM carries out the regression estimation by risk minimiza-
tion and the risk is measured by Vapnik’sε-insensitive loss
function. Unlike artificial neural networks (ANN) that employ
traditional empirical risk minimization (ERM) principle (Vapnik,
1998), SVM adopts the of structural risk minimization (SRM)
principle.32 This has been found to be superior to the ERM
principle. So SVM is usually less vulnerable to overfitting
problem. (3) The risk function of SVM is made up of the
empirical error and a regularization term which is derived from
the SRM principle.

The basic idea in SVR is to map the input data x into a higher
dimensional feature space F via a nonlinear mappingΦ and
then a linear regression problem is obtained and solved in the
feature space. Therefore, the regression approximation addresses
the problem of estimating a function based on a given data set
G ) {(xi,di)}i)1

l (xi is input vector,di is the desired value,l
corresponds to the size of the training data).

The generic SVR estimating function takes the form as eq 1

where{Φi(x)}i)1
l denotes the features of inputs,{wi}i)1

l andb
are coefficients. The coefficients are estimated by minimizing
the regularized risk function

where

In eq 2, the first termC(1/l)∑i)1
l Lε (di,yi) is the empirical error

(risk). Theε-insensitive loss function given by eq 3 is used to
measure them. This loss function provides the advantage of
enabling one to use sparse data points to represent the decision
function as eq 1. Also, the second term1/2||w||2 is the
regularization term, whereC is the regularized constant.C
determines the tradeoff between the empirical risk and the
regularization term. Increasing the value ofC will result in the
relative importance of the empirical risk to the regularization
term to grow.ε is called the tube size and it corresponds to the
approximation accuracy placed on the training data points. Both
C andε are user-prescribed parameters.

Then, by introduction of Lagrange multipliers (Ri,Ri
/) and

satisfying the equalityRi‚Ri
/) 0, Ri g 0, Ri

/ g 0, i ) 1, ..., l,
the decision function (1) becomes the following form:

In eq 4, the kernel functionK is equivalent toK(x,xi) ) Φ(x)‚
Φ(xi). All kernel functions must satisfy Mercer’s condition
(kernel function must be symmetric, and it must be positive
definite) that corresponds to the inner product of some feature
space. One has several possibilities for the choice of this kernel
function, including linear, polynomial, spline, and radial basis
function. The elegance of using the kernel function lies in the
fact that one can deal with feature spaces of arbitrary dimen-
sionality without having to compute the mapΦ(x) explicitly.
In SVR, a commonly used kernel function is the Gaussian radial
basis function.

3.3. SVM Implementation and Computation Environment.
All calculation programs implementing SVM were written in

TABLE 1. (Continued)

no. compound
log
Sw

log Sw
(HM)

log
S

log S
(HM)

log S
(SVM) no. compound

log
Sw

log Sw
(HM)

log
S

log S
(HM)

log S
(SVM)

150 2,3,5-trimethylheptane -1.220 -1.161 -1.350 -1.297 -1.299 188a 2,2,3,3,4-pentamethylpentane-1.351 -0.932 -1.481 -1.076 -1.022
151 2,3,6-trimethylheptane -1.103 -1.059 -1.234 -1.197 -1.238 189 2,2,3,4,4-pentamethylpentane-1.184 -0.912 -1.315 -1.058 -0.960
152 2,4,4-trimethylheptane -0.977 -0.979 -1.108 -1.119 -1.145 190 pentylcyclohexane 0.584 0.662 0.472 0.517 0.532
153a 2,4,5-trimethylheptane -1.115 -1.182 -1.246 -1.319 -1.302 191 1-cyclopentylhexane -1.420 -1.029 -1.576 -1.166 -1.384
154 2,4,6-trimethylheptane -0.891 -1.134 -1.022 -1.272 -1.233 192 pentylcyclohexane -1.233 -1.038 -1.389 -1.175 -1.386
155 2,5,5-trimethylheptane -1.023 -1.048 -1.153 -1.188 -1.186 193a undecane -2.357 -1.644 -2.487 -1.774 -2.016
156 3,3,4-trimethylheptane -1.095 -1.19 -1.379 -1.327 -1.292 194 hexylbenzene 0.008 0.186-0.105 0.042 0.100
157 3,3,5-trimethylheptane -1.095 -1.112 -1.226 -1.250 -1.244 195 1,2,3-triethylbenzene 0.590 0.365 0.436 0.221 0.410
158a 3,4,4-trimethylheptane -1.229 -1.141 -1.360 -1.278 -1.285 196 1,2,4-triethylbenzene 0.590 0.435 0.436 0.290 0.508
159 3,4,5-trimethylheptane -1.264 -1.337 -1.394 -1.471 -1.371 197 1,3,5-triethylbenzene 0.622 0.49 0.469 0.345 0.564
160 3-isopropyl-2-methylhexane-1.367 -1.177 -1.497 -1.313 -1.307 198a 1-cyclopentylheptane -1.790 -1.409 -1.946 -1.545 -1.823
161 3,3-diethylhexane -1.357 -1.291 -1.487 -1.423 -1.435 199 1-cyclohexylhexane -1.599 -1.391 -1.754 -1.527 -1.826
162 3,4-diethylhexane -1.298 -1.331 -1.429 -1.462 -1.465 200 dodecane -2.432 -1.927 -2.538 -2.057 -2.478
163a 3-ethyl-2,2-dimethylhexane-1.105 -1.088 -1.236 -1.226 -1.233 201 1-phenyloctane -0.324 -0.329 -0.437 -0.472 -0.340
164 4-ethyl-2,2-dimethylhexane-0.876 -0.995 -1.007 -1.135 -1.167 202 1-cyclopentyloctane -2.046 -1.768 -2.201 -1.904 -2.124
165 3-ethyl-2,3-dimethylhexane-1.293 -1.175 -1.424 -1.311 -1.312 203a 1-cyclohexylheptane -1.857 -1.795 -2.013 -1.931 -2.157
166 4-ethyl-2,3-dimethylhexane-1.225 -1.252 -1.356 -1.386 -1.363 204 tridecane -2.699 -2.322 -2.830 -2.451 -2.773
167 3-ethyl-2,4-dimethylhexane-1.205 -1.174 -1.336 -1.309 -1.363 205 1-phenyloctane -0.603 -0.727 -0.715 -0.868 -0.725
168a 4-ethyl-2,4-dimethylhexane-1.229 -1.106 -1.360 -1.243 -1.265 206 1,2,3,4-tetraethylbenzene -0.049 -0.543 -0.202 -0.683 -0.497
169 3-ethyl-2,5-dimethylhexane-1.055 -1.179 -1.186 -1.315 -1.294 207 1,2,3,5-tetraethylbenzene -0.041 -0.491 -0.194 -0.632 -0.448
170 4-ethyl-3,3-dimethylhexane-1.273 -1.181 -1.404 -1.316 -1.325 208a 1,2,4,5-tetraethylbenzene -0.033 -0.527 -0.186 -0.668 -0.477
171 3-ethyl-3,4-dimethylhexane-1.254 -1.291 -1.385 -1.425 -1.364 209 1-cyclopentylnonane -2.187 -2.086 -2.343 -2.221 -2.361
172 2,2,3,3-tetramethylhexane -1.210 -0.948 -1.341 -1.090 -1.065 210 1-cyclohexyloctane -1.996 -2.086 -2.151 -2.221 -2.388
173a 2,2,3,4-tetramethylhexane -1.173 -1.08 -1.303 -1.220 -1.185 211 tetradecane -2.658 -2.544 -2.770 -2.673 -3.050
174 2,2,3,5-tetramethylhexane -0.912 -0.99 -1.042 -1.132 -1.090 212 1-phenylnonane -0.793 -1.089 -0.906 -1.230 -1.082
175 2,2,4,4-tetramethylhexane -1.048 -0.908 -1.178 -1.053 -0.985 213a 1-cyclopentyldecane -2.229 -2.376 -2.385 -2.510 -2.458
176 2,2,4,5-tetramethylhexane -0.898 -0.985 -1.029 -1.128 -1.078 214 1-cyclohexylnonane -2.022 -2.439 -2.178 -2.573 -2.490
177 2,2,5,5-tetramethylhexane -0.633 -0.761 -0.764 -0.909 -0.949 215 pentadecane -2.959 -2.885 -3.092 -3.013 -3.133
178a 2,3,3,4-tetramethylhexane -1.315 -1.117 -1.446 -1.256 -1.237 216 hexadecane -3.046 -3.06 -3.398 -3.188 -3.047
179 2,3,3,5-tetramethylhexane -1.030 -1.002 -1.161 -1.144 -1.118 217 heptadecane -2.854 -3.359 -2.983 -3.488 -3.063
180 2,3,4,4-tetramethylhexane -1.242 -1.14 -1.373 -1.279 -1.229

a Test set; logSw : solubility in water system; logS: solubility in water saturated with salt system.

y ) ∑
i)1

l

wi‚Φi(x) + b, wi ⊂ Rn, b ⊂ R (1)

RSVM(C) ) C
1

l
∑
i)1

l

Lε (di,yi) +
1

2
||w||2 (2)

Lε(d,y) ){|d - y| - ε |d - y| g ε

0, otherwise } (3)

f(x,Ri,Ri
/) ) ∑

i)1

l

( Ri - Ri
/)K(x,xi) + b (4)
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R-file based on R script for SVM.33 All scripts were compiled
using R1.7.1 compiler running operating system on a Pentium
IV with 256M RAM.

4. Results and Discussion

4.1. Result of the Heuristic Method.The solubility of the
training set has been correlated with three descriptors employing
CODESSA software via HM. As shown in Figure 1, three
descriptors appear to be sufficient for a successful regression
model. For a three-parameter model, the squared correlation
coefficient (R2) is 0.976, and for a seven-parameter model, it
improves to the value 0.987. As shown in Figure 1, the
introduction of a new descriptor to the regression model does
not significantly improve the value ofR2 and it was determined
that the optimum subset size had been achieved. This model
gave an RMS error of 0.187 for the training set, 0.219 for the
prediction set, and 0.194 for the whole set, and the corresponding
correlations (R) were 0.988, 0.980, and 0.986, respectively. The
calculated and experimental values of logSwere given in Table
1, the scatter plot was shown in Figure 2, and the statistical
parameters of the model were shown in Table 2.

To compare with the solubility in pure water, the same
descriptors were used to build the model and the prediction
results were listed in Table 1. It can be seen that the selected
descriptors can be used to predict the solubilities not only in
water saturated with salt but also in pure water as shown in

Table 3. The RMS error and correlation coefficient of solubility
in pure water were 0.192 and 0.987.

By interpreting the descriptors in the regression model, it is
possible to gain some insight into factors that are likely to govern
the solubility in electrolyte. This model contains one electrostatic
(PNSA-1 partial negative surface area [Zefirov’s PC]) and two
topological (average complementary information content (order
0), Kier&Hall index (order 2)) descriptors. These descriptors
encoded different aspects of the molecular structure.

According to the t-test value (the ratio of the coefficient to
the coefficient error) in Table 2, the most significant descriptor
of the model is average complementary information content

(order 0) (0CIC). The average complementary information
content and average information content are defined on the basis
of the Shannon information theory. They can be calculated for
different orders of neighborhoods,r (r ) 0, 1, 2, ...,F), where
F is the radius of the molecular graph G. At the zero-order level,
the atom set is partitioned solely on the basis on its chemical
nature; at the level of the first-order topological neighborhood,
the atoms are partitioned into disjoint subsets on the basis of
their chemical nature and their first-order bonding topology.
At the next level, the atom set is decomposed into equivalence
classes using their chemical nature and bonding pattern up to
the second-order bonded neighbors. The three topological
indices, average complementary information content (order 0),
average complementary information content (order 1) and
average complementary information content (order 2), reflect
the branching of the molecular and the diversity of the atoms
of the branching. In other words, they represent the difference
between the maximum possible complexity of a graph and the
realized topological information of the chemical species as
defined by the information content. Therefore, they can describe
the difference of the hydrophobic and the steric property of the
solute comprehensively. As the hydrophobic and steric interac-
tion is the main interaction between the solute and the solvent,
these three topological descriptors play an important role in the

solubility. 0CIC can be related to molecular shape and sym-
metry. In order for a solute to enter into aqueous solution, a
cavity must be formed in the solvent for the solute molecular
to occupy. Water as a solvent would much prefer to interact
with itself or other hydrogen bonding or ionic species than with
a nonpolar solute, so there is an increasing penalty (and thus
lower solubility) for hydrocarbons with high-symmetry solutes.

The negative regression coefficients for0CIC reflect the fact
that hydrocarbons with higher symmetry have weaker coordina-
tion ability that leads to lower solubility.

The Kier&Hall index (order 2), KHI2, belongs to the well-
known valence connectivity indices. The Kier&Hall indicesmXV

defined by eqs 5 and 6 belong to the same “family” of
descriptors

In eqs 5 and 6,Zk is the total number of electrons in thekth
atom, Zk

V is the total number of valence electrons in thekth
atom,Hk is the number of hydrocarbon atoms directly attached
to thekth non-hydrocarbon atom,m ) 0 is the atomic valence
connectivity indices,m ) 1 is the one bond path valence

Figure 1. Influence of the number of descriptors onR2.

Figure 2. Experimental logS vs the calculated logS by HM.

mXV ) ∑
i)1

Ns

∏
k)1

m+1 ( 1

δk
V)1/2

(5)

δk
V )

Zk
V - Hk

Zk - Zk
V - 1

(6)
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connectivity indices,m) 2 is the two bond valence connectivity
indices, andm ) 3 is the three contiguous bond fragment
valence connectivity indices, etc.

Kier and Hall have recently interpreted the molecular con-
nectivity in terms of intermolecular accessibility starting from
the interpretation of the bond contributions. Thus, they have
concluded that34 “the molecular connectivity index is the
contribution of one molecule to the bimolecular interactions
arising from encounters of bonds among two molecules”. The
significant positive coefficient of size related descriptors in the
models indicate the higher probability of interaction leads to
higher solubility.

The final descriptor, the partial negative surface area
[Zefirov’s PC] (PNSA1), is a sum of the negatively charged
solvent-accessible atomic surface area

The PNSA1 encoded the distribution of the negative charge
normalized by the total surface area of the molecular. The
PNSA1 should be directly related to the hydrocarbon bond or
Lewis basicity of the molecule. A large (in magnitude) value
of PNSA1 should and does lead to lower logS.

From the above discussion, the three descriptors can account
for the structural features responsible for the solubility of
hydrocarbons in water saturated with salt.

4.2. Result of SVM.To obtain more accurate model, after
the linear model was established, we built the nonlinear
prediction model by SVM to further discuss the correlation
between the molecular structure and the solubility based on the
same subset of descriptors. Similar to other multivariate
statistical models, the performances of SVM for regression
depend on the combination of several parameters: capacity
parameterC, ε of ε-insensitive loss function, the kernel typeK,
and its corresponding parameters. In this work, LOO cross-
validation was performed for parameters optimization, which
probably is the current best-performing approach to the SVM
design problem. RMS was used as an error function which was
defined as eq 8

C is a regulation parameter that controls the tradeoff between
maximizing the margin and minimizing the training error. IfC

is too small, then insufficient stress will be placed on fitting
the training data. IfC is too large, then the algorithm will overfit
the training data. However, ref 35 indicated that the prediction
error was scarcely influenced byC. To make the learning
process stable, a large value should be set up forC.

For regression tasks, the Gaussian kernel shown as eq 9 is
commonly used

whereγ is a constant, the parameter of the kernel, andx andxi

are two independent variables.γ controls the amplitude of the
Gaussian function and, therefore, controls the generalization
ability of SVM. Each RMS error on the LOO cross-validation
was plotted versusγ (Figure 3), and the minimum was chosen
as the optimal conditions. In this case,γ ) 0.031.

The optimal value forε depends on the type of the noise
present in the data, which is usually unknown. Even if enough
knowledge of noise is available to select an optimal value for
ε, there is the practical consideration of the number of resulting
support vectors.ε-insensitivity prevents the entire training set
meeting boundary conditions, and so allows for the possibility
of sparsity in the dual formulation’s solution. So, choosing the
appropriate value ofε is critical from theory. To find an optimal
ε, the RMS on LOO cross-validation on differentε was
calculated. The curve of RMS versus the epsilon was shown in
Figure 4. The optimalε was found as 0.04.

The last important parameter is the regularization parameter
C, of which the effect on the RMS was shown in Figure 5.
From Figure 5, the optimalC was found as 100.

TABLE 2: Linear Model in Water Saturated with Salt Systema

no descriptor coefficient standard error t-test value

1 intercept 13.6540 0.2351 58.0858
2 average complementary information content (order 0) -3.7800 0.0743 -50.8892
3 PNSA-1 partial negative surface area [Zefirov’s PC] -0.01344 0.0008 -15.0206
4 Kier&Hall index (order 2) 0.2458 0.0280 8.7660

a R ) 0.986,R2 ) 0.972,Rcv
2 ) 0.971,F ) 2514.7559, RMS) 0.194,N ) 217.

TABLE 3: Linear Model in Water System a

no descriptor coefficient standard error t-test value

1 intercept 13.8776 0.2310 60.0680
2 average complementary information content (order 0) -3.8076 0.0730 -52.1570
3 PNSA-1 partial negative surface area [Zefirov’s PC] -0.0135 0.0009 -15.3598
4 Kier&Hall index (order 2) 0.2529 0.0276 9.1793

a R ) 0.987,R2 ) 0.974,Rcv
2 ) 0.973,F ) 2627.2671, RMS) 0.192,N ) 217.

PNSA1) ∑
A

SA ∈{δA < 0} (7)

RMS ) x∑
i)1

n

(di - oi)
2

n
(8)

Figure 3. Gamma vs RMS error on LOO cross-validation (C ) 100,
ε ) 0.1).

K(xi,x) ) exp{-γ|x - xi|}2 (9)
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Through the above process,γ, ε, andC were fixed to 0.031,
0.04, and 100, respectively, when the support vector number
of the SVM model was 111, the predicted results of the optimal
SVM were shown in Table 1 and Figure 6. The model gave an
RMS of 0.123 for the training set, 0.170 for the test set, and
0.134 for the whole set, and the corresponding correlation
coefficients (R) were 0.995, 0.988, and 0.994, respectively. The
statistical parameters of different QSPR models were listed in

Table 4, which indicate that the performance of SVM is a little
better than that of HM.

5. Conclusion

Linear and nonlinear QSPR models of 217 hydrocarbons were
built based on HM and SVM using the topological and
electrostatic descriptors. Comparing with the linear and nonlinear
models, it is proved that nonlinear SVM model gave better
results than those of the linear model. It can be concluded that
(1) The proposed models could identify and uncover that
topological and electrostatic descriptors are related to the
solubility of nonelectrolyte in the electrolyte from the molecular
level. (2) The nonlinear model can describe the relationship
between the structural parameters and the logS of the 217
hydrocarbons more accurately. (3) SVM proved to be a useful
tool in the prediction of the solubility of nonelectrolyte in the
electrolyte. It has some advantages over other techniques, such
as convergence to the global optimum and good generalization.
Besides, because only support vectors (only a fraction of all
data) are used in the generalization process, the SVM is suitable
particularly to the problems with a great deal of data in
cheminformatics. Furthermore, there are fewer free parameters
to be adjusted in the SVM, and the model selecting process is
easy to control. Therefore, the SVM is a very promising machine
learning technique from many aspects and will gain more
extensive application.
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